

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATIO	QUALIFICATION: Bachelor of science in Applied Mathematics and Statistics						
QUALIFICATIO	N CODE: 35BAMS	LEVEL: 6					
COURSE CODE	:: NUM701S	COURSE NAME: NUMERICAL METHODS 1					
SESSION:	JUNE 2022	PAPER: THEORY					
DURATION:	3 HOURS	MARKS: 100					

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER					
EXAMINER	Dr S.N. NEOSSI NGUETCHUE				
MODERATOR:	Prof S.S. MOTSA				

INSTRUCTIONS

- 1. Answer ALL the questions in the booklet provided.
- 2. Show clearly all the steps used in the calculations. All numerical results must be given using 4 decimals where necessary unless mentioned otherwise.
- 3. All written work must be done in blue or black ink and sketches must be done in pencil.

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 2 PAGES (Including this front page)

Attachments None

Problem 1 [30 marks]

1.1. If $f \in C^{n+1}[a, b]$, prove that for any points x and c in [a, b], we have

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} (x - c)^k + R_n(x) \quad \text{where} \quad R_n(x) = \frac{1}{n!} \int_c^x f^{(n+1)}(t) (x - t)^n dt$$

[Hint: use integration by parts $\int u dv = uv - \int v du$ with appropriate choice of u and v.]

1.2. Consider $f(x) = -\frac{1}{2}x^2 + 3x - 4 = 0, x \in [3.5, 4.5].$

Use Newton's method to approximate the root of the above equation after three iterations. [4]

- **1.3.** The equation $x = g(x) = (x^2 1)/3$ has a root in [-1, 1].
- 1.3.1. State the fixed-point Theorem.

1.3.2. Prove that the sequence $(x_k)_{k\in\mathbb{N}}$ with $x_{k+1}=g(x_k)$ converges to the fixed-point of the equation given above in **1.3.** for any choice of $x_0\in[-1,1]$. [10]

Problem 2. [40 marks]

- **2.1.** Write down in details the formulae of the Lagrange and Newton's form of the polynomial that interpolates the set of data points $(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n))$. [7]
- **2.2.** Use the results in **2.1.** to determine the Lagrange and Newton's form of the polynomial that interpolates the set of data points (0,1),(1,6) and (2,17). [18]
- **2.3.** Establish the error term for the rule:

 $f'''(x) \approx \frac{1}{2h^3} [3f(x+h) - 10f(x) + 12f(x-h) - 6f(x-2h) + f(x-3h)]$

Problem 3. [30 marks]

Given the IVP

$$y' = ty + y + t^2, \quad y(0) = 2.$$
 (1)

- 3.1 Write down in details the fouth-order Runge-Kutta (RK4) algorithm to solve the specific IVP given by Eq. (1). [10]
- 3.2 Given the table below, use the result of question 3.1 to compute the missing values. [20]

k	t_k	k_1	k_2	k_3	k_4	y_k
1	0.08	2	2.1648		2.35403	2.17369
2	0.16		2.55439		2.78496	
3		2.78488	3.0281			2.62174
4		3.30856		3.61874	3.94524	
5	0.4		4.30325		4.71963	

TOTAL: 100 marks

[4]

[15]

God bless you!!!